

Analysis of the Effect of Java Software Faults on Security Vulnerabilities and

Their Detection by Commercial Web Vulnerability Scanner Tool

Tânia Basso Plínio César Simões Fernandes Mario Jino Regina Moraes

State University of Campinas, UNICAMP, Brazil

{taniabasso, pliniocsfernandes}@gmail.com {jino@dca.fee, regina@ft}.unicamp.br

Abstract

Most software systems developed nowadays are highly

complex and subject to strict time constraints, and are

often deployed with critical software faults. In many cases,

software faults are responsible for security vulnerabilities

which are exploited by hackers. Automatic web

vulnerability scanners can help to locate these

vulnerabilities. Trustworthiness of the results that these

tools provide is important; hence, relevance of the results

must be assessed. We analyze the effect on security

vulnerabilities of Java software faults injected on source

code of Web applications. We assess how these faults affect

the behavior of the scanner vulnerability tool, to validate

the results of its application. Software fault injection

techniques and attack trees models were used to support the

experiments. The injected software faults influenced the

application behavior and, consequently, the behavior of the

scanner tool. High percentage of uncovered vulnerabilities

as well as false positives points out the limitations of the

tool.

1. Introduction

Web applications are extremely popular nowadays. From

single individuals up to large organizations, there is an

increasing dependency on this technology. Information and

data are stored, traded and made available on the Web. This

type of application is becoming increasingly exposed as any

security vulnerability can be exploited by hackers.

Automatic vulnerability scanner tools are often used by

developers and system administrators to test Web

applications against security vulnerabilities. Reliable results

from vulnerability scanners are essential and the analysis of

the scanners’ effectiveness is important to guide the

selection as well as the use of these tools. Effectiveness may

be assessed by two main aspects: vulnerability coverage and

false positive rate. The vulnerability coverage is associated

to the reliability of the tool; high reliability means that the

tool is able to detect correctly all security vulnerabilities in

the application. (it is doubtful whether undetected

vulnerabilities do not really exist in the application or the

scanner was not able to detect it). It is important to

minimize the rate of false positives because when a non-

existent vulnerability is reported, the development team may

spend a lot of time trying to correct it before realizing that

the false vulnerability does not really exist.

Previous research [1][2] shows that, in general, Web

vulnerability scanners present a high number of false-

positives and low coverage, highlighting the limitations of

this kind of tool. Although other potential causes for

vulnerability do exist, the root cause of most security

attacks are vulnerabilities created by software faults [3][4].

Our goal is to investigate the effect that injected Java

software faults may have on security vulnerabilities. The

proposal is to understand, through the analysis of the

context of the source code of the applications where the

faults were injected, how these faults affects the behavior of

the applications with respect to security vulnerabilities. This

is important to speed up the detection of security

vulnerabilities, allowing that countermeasures are applied to

eliminate them or to reduce the severity of their

exploitation, contributing to higher levels of dependability

for the application under test. Then, we want to analyze

how it affects the behavior of the scanner vulnerability tool.

In order to validate the scanner results it is necessary to

assess its effectiveness. Based on this knowledge, we intend

to extend the experiments to other scanner tools and

investigate how to scale the results to more complex

applications in an automatic way. Then we want to propose

a methodology to analyze vulnerability scanners

effectiveness based on fault injection and attack injection

techniques.

The paper describes a method based on attack trees

modeling to perform security tests. The approach consists

of injecting software faults into small Java applications.

They have to be small because the context of the source

code should be analyzed to get accurate measures of the

detection coverage and false positives rate, the reason why

we want to have the experiments under control. Once the

faults are injected, the scan is run to check if it can detect

potential vulnerabilities caused by the injected fault.

mailto:jino@dca.fee
mailto:regina@ft%7D.unicamp.br

Creation of vulnerabilities is confirmed through manual

attacks, guided by the attack trees.

Unlike other studies, where lots of faults are injected

only to validate the scanner tool results, we want to

investigate, through application’s source code construction

and attack models, the relationship between the fault

injected and the potential security vulnerabilities created.

The method described in this paper will eventually lead to

the development of an attack injection tool for Java

applications. Later, we intend to reproduce these

experiments, automatically, on larger and more complex

applications, applying the knowledge acquired through these

controlled experiments.

The structure of this paper is as follows: Section 2

presents the background on software faults; Section 3

describes the related work on analysis of scanner tools

effectiveness; Section 4 describes the attack trees modeling

approach; Section 5 shows the steps and the methodology

applied to the experimental study; Section 6 presents the

results and discussions on the study; and Section 7 presents

our conclusions and future work.

2. Software fault injection

Few works address the relationship between software

faults and security vulnerabilities. A study by Fonseca and

Vieira [3] analyzed security patches of web applications

developed in PHP. The types of faults that are most likely to

lead to security vulnerabilities are characterized.

The work by Basso et al [4] presents a field data study

on real Java software faults, including security faults. The

field study was based on security correction patches analysis

available in open source repositories. More than 550 faults

were analyzed and classified, determining the

representativeness of these faults. The authors also define

new operators, specific to this programming language

structure, guiding the definition of a Java faultload. The

software fault injection technique used in this paper is the

G-SWFIT [5]. This technique focuses on the emulation of

just the most frequent types of faults. It is based on a set of

fault injection operators that reproduce directly in the target

executable code the instruction sequences that represent the

most common types of high-level software faults.

To inject the faults, a use case of the application was

selected, including all classes in the source code that

implements this use case. Then, the locations in this piece of

the target code where the injection is performed are selected

by the G-SWFIT to inject representative software faults.

Each fault was injected in all possible locations of this

specific use case, one at time, forming different scenarios to

be analyzed.

3 Vulnerability scanner tools effectiveness

Web vulnerability scanners are regarded as an easy way

to test applications against vulnerabilities. Most of these

scanners are commercial tools (e.g., Acunetix [6], IBM

Rational AppScan [7], N-Stalker [8] and HP WebInspect

[9]); there are also free ones (e.g., Burp Suite [10] and

Gamja [11]), but with limited use, not fully automatic as

their commercial equivalent.

Vieira et al [1] present an experimental evaluation of

security vulnerabilities in publicly available web services.

Four well known vulnerability scanners have been used to

identify security flaws in web services implementations. A

large amount of differences in vulnerabilities detected and a

high number of false-positives and low coverage were

observed.

Fonseca et al [2] propose a method to evaluate and

benchmark automatic Web vulnerability scanners using

software fault injection techniques. Three leading

commercial scanning tools were evaluated and the results

also have shown that in general the coverage is low and the

percentage of false positives is very high.

However, these studies were focused on a specific family

of applications: web services and PHP applications,

respectively. Thus, the results obtained cannot be easily

generalized and our intention is to complement the results

obtained previously, providing Java applications results,

aiming to increase the amount of different programming

languages applications to obtain the sufficient requirements

to generalize the results. Furthermore, their previous study

does not present a clear methodology to validate the

vulnerabilities detected by scanner tools.

We investigate the behavior of scanner tool in the

presence of injected Java faults, show a method using attack

trees to model the possible ways to perform attacks to

specific vulnerabilities, and validate the results obtained by

the scanner. This is addressed in the next sections.

4. Attack trees and security vulnerabilities

Attack trees provide a structural way of describing the

security of systems, based on several attacks types [12]. In

attack trees, the root node represents the achievement of the

ultimate goal of the attack. Each child node represents sub-

goals that have to be accomplished for the parent goal to

succeed. Parent nodes can have their child nodes related by

an OR or an AND relationship. In an OR relationship, if any

of the sub-goals are accomplished then the parent node is

successful. With an AND relationship, all of the sub-goals

must be accomplished for the parent node to be successful.

Individual intrusion scenarios are generated by traversing

the tree in a depth-first manner. The objective is to cover all

actions represented in the leaves.

In our work the attack trees were used to describe the

possibilities of attacking a specific type of security

vulnerability. We consider three types of security

vulnerabilities: SQL Injection , Cross-Site Scripting (XSS),

and Cross-Site Request Forgery (CSRF). They were

selected because of their criticality, occupying the first,

second and fifth place in the OWASP Top 10 [13]. These

vulnerabilities are widely spread and dangerous

vulnerabilities, and may cause major damage to the victims.

XSS occurs when a web application gathers malicious

data from a user. The data is usually gathered in the form of

a hyperlink which contains malicious content within it. The

user will most likely click on this link from another website,

instant message, or simply just reading a web board or e-

mail message. After the data is collected by the Web

application, it creates an output page for the user,

containing the malicious data that was originally sent to it,

but in a manner to make it appear as valid content from the

website [14]. The malicious code can also be permanently

stored on the target servers, such as in a database or it can

be generated dynamically through the Document Object

Model of the browser. SQL injection refers to a class of

code-injection attacks in which data provided by the user is

included in an SQL query in such a way that part of the

user’s input is treated as SQL code. By leveraging these

vulnerabilities, an attacker can submit SQL commands

directly to the database [15].

CSRF works by exploiting the trust a site has for the

user. Site tasks are usually linked to specific URLs (e.g:

http://site/stocks?buy=100&stock=ebay) allowing specific

actions to be performed when requested. If a user is logged

into the site and an attacker tricks their browser into making

a request to one of these task URLs, then the task is

performed and logged as the logged in user [16].

For each of these three types of vulnerability an attack

tree was created. Figure 1 presents the attack tree for

validation of CSRF vulnerabilities. This tree was chosen

because it is the vulnerability that appeared more frequently

in the results. Due to space restrictions, the other trees are

not presented, but they can be seen elsewhere [17]. The

"OR" labels are omitted to improve the tree simplicity.

For the CSRF tree we covered the part of the CSRF

attack relative to the acceptance of the requests coming

from another source. The part relative to the means used to

lure the user to activate the request is not covered as they

are out of the defensive bounds that an application can have

against CSRF.

In Figure 1, the first step to perform a CSRF attack is to

have the user logged in the site because the attack will use

its trust in the user authentication. If this step is not fulfilled

the attack could not be realized. The next step is to analyze

the request from the site that the attack will target in order

to be able to reproduce it. If the site does not have CSRF

countermeasures this step will lead to the next one because

the request will be considered valid and will take effect on

the site.

If the site uses any defensive measure it will be necessary

to analyze the request and take additional actions. A known

defensive method consists in appending different tokens to

each request, but this approach can be bypassed if the

application is vulnerable to XSS attacks. This is possible

because XSS attacks permit to get valid session tokens from

the application. The last path (the three remaining leaf

nodes) of the tree shows how to overcome applications that

use verification of the HTTP (Hypertext Transfer Protocol)

Referrer attribute, although this is not a recommended

defensive measure.

5. The experimental study

Two open source Web applications developed in Java

were selected to carry out the experiment. The first one,

which we call App1, is a Customer Relationship Manager

(CRM) and Project Management Tool. It uses the MySQL

database and technologies such as Hibernate, Struts

Figure 1. CSRF attack tree

framework, and Jasper Reports. The second Web

application, App2, is a management system for Distance

Education, developed by the Brazilian federal

government. It uses the Postgres database and

technologies such as Hibernate and Ajax. We have

chosen similar use cases from both applications to be

the target piece of code of injected faults.

The types of fault to be injected were selected from

the faultload of Basso et al [4]. We selected the two

most frequent types of faults observed: the Missing

Function Call (MFC) and the Missing If construct plus

the Statement (MIFS) for this first set of experiments.

They represent the most common types of fault that are

responsible for security vulnerabilities. The MFC is the

fault type which relates to function or method call that

was missing from implementation. The MIFS is a fault

type that represents the omission of a block of code

made of an “if” construct and its associated statements

which are executed only if the “if” condition is true [5]

The security vulnerability scanner was selected

because of its great market insertion and availability.

We do not mention its brand because commercial

licenses do not allow in general the publication of tool

evaluation results. Basically, the operation of the

scanner consists of two stages: explore and test. During

the explore stage, requests are send to the application

and the responses are analyzed, looking for indication

of potential vulnerabilities. In the test stage, the tool

sends thousands of custom tests to identify security

problems (based on the results of the first stage) and

rank their level of security risk.

The three security vulnerabilities considered for this

study are discussed in Section 4

5.1. Injecting faults, executing the scans and

validating the results

The tests start with a “Gold Run”, where the

application is tested once by the scanner tool without

any fault injected. The web application may already

have some vulnerabilities and this run should be able to

find most of them. The results of “Gold Run” execution

are collected to compare other results when the faults

are injected.

After the “Gold Run”, one fault is injected. The

context of the code where the fault is injected is

analyzed manually to understand the effect of this fault

in the applications behavior. If necessary, data are

inserted, removed or changed in the database of the

application under test to guarantee the activation of the

fault. Next, the code and database are versioned,

defining a scenario to be tested.

The scanner application is run and verification for

new vulnerabilities is made, i.e., we identify new

vulnerabilities when comparing the vulnerabilities

detected in the original application (without any fault

injected) . In some cases, one fault injected can be

responsible for many security vulnerabilities. If new

vulnerabilities are detected, attacks are performed in the

current scenario using the attack trees. To exploit the

new vulnerabilities all possibilities detected through the

attack tree are experimented. This aims to verify if the

new vulnerability actually exists or if it is a false

positive. Then, the same attacks are performed in the

original application scenario (without any fault injected)

in order to verify if the vulnerability existed before the

fault injection and was not identified by the tool (lack of

coverage).

The procedure is done for each possible location in

the source code where faults can be injected in

accordance with G-SWFIT technique (for the selected

use case).

6. Results and discussions

For both Web applications, we analyzed,

respectively, 11 and 23 different scenarios. Table 1

shows the total of scenarios that presented new security

vulnerabilities detected by the scanner due to the fault

injection.

Table 1. Applications scenarios and vulnerabilities

 App1 App2

Total scenarios analyzed 11 23

Scenarios with new vulnerabilities 5 7

% of faults that affected the scan 46% 30%

According to Table 1, about 40% of the injected

software faults affected the scanner results. A detailed

analysis of the context of application’s source code

where the faults were injected is important to assess the

effect of the fault in the application behavior. The

context analysis in conjunction with the structure of the

attacks permits to assess the influence of the injected

fault on potential new security vulnerabilities detected

by the scanner tool. Consequently, this procedure

permits to assess correctly the effectiveness of the

scanner tool, through the identification of lack of

coverage and false positives.

We noticed that the injected faults were not in the

same locations the new vulnerabilities arose. The

injected faults affected the applications behavior and,

consequently, the scanner tool behavior, due to the

context of the application and the procedures necessary

to activate the fault. For example, many faults were

injected in locations where a null entry point is verified

in the source code. Activating this fault, the application

modifies its behavior by not verifying the null entry

point and forcing the application to display error pages.

Also, according to the attack structure in Figure 1, the

verification of null entry points is not explored, i.e., it

doesn’t create a security vulnerability.

Even though the injected software faults are

unrelated to the location of new vulnerabilities, they

affected the results of the scanner tool. Table 2 shows

the lack of coverage and the number of false positives

obtained in the experiments. The lack of coverage is

about vulnerabilities that do exist in the web

applications, confirmed through successful manual

attacks. The number of false positives is related to

vulnerabilities indicated by the tool that were not

confirmed by the manual attacks. Table 3 shows the

percentage of lack of coverage and false positives

according to each type of security vulnerability, where

the last column resume the percentage of the total of

experiments including all types of vulnerabilities.

Table 2. Applications lack of coverage and false

positives

 App1 App2 Total

Vulnerabilities not

detected (lack of

coverage)

8 1 9

False positives 5 3 8

Table 3. Percentage of security vulnerabilities: lack

of coverage and false positives

 XSS
SQL

inject
CSRF Total

Vulnerabilities 2 2 15 19

Lack of

coverage (%)
0% 0% 60% 47%

False positive

(%)
50% 100% 34% 43%

Based on Table 2 the App1 presented worse lack of

coverage and more false positives than App2. By the

analysis of the context of the source code, we believe

that the App2 code is more modularized, with less

coupling with other modules and fewer use cases. It is

also smaller, i.e., has fewer lines of code (LOC). Thus,

it is easier to activate the injected faults and easier to

control the application’s behavior. Similarly, it is easier

for the tool to analyze the application and detect the

vulnerabilities in a correct way.

All 9 undetected vulnerabilities are about CSRF and

are part of the vulnerabilities presented in Table 3. They

represent 60% of the lack of coverage. These lacks of

coverage were identified in the original applications

(without any fault injected) and in the applications with

faults injected. In most of the cases, when scanning the

application with faults injected, a new vulnerability

detected by the tool was one already present in the

original application, not identified in the “Gold Run”.

Also in Table 3, the false positives come from the

three types of security vulnerabilities: XSS, SQL

injection and CSRF, representing, respectively, 50%,

100% and 34% of the vulnerabilities detected. The false

positive associated to the XSS vulnerabilities is

considered because the scanner tool integrates outdated

version of internet browsers. An attack successfully

executed by the tool, when executed in the later

versions of internet browsers, has no effect, because

these versions implement features that do not permit

the execution of common XSS attacks.

The SQL injection false positives were identified

through the attacks and the analysis of the source code.

Both applications use the Hibernate technology, which

is an object/relational persistence and query service

[18]. It permits to encapsulate the queries and send

objects to the database through predefined classes and

methods, discarding the necessity of explicit SQL

queries constructions. According to forums and some

information available in technical websites [19][20], in

code constructed with Hibernate it is more difficult –

but not impossible – to have vulnerability to SQL

injection attacks. However, the way that the application

was coded, i.e., extremely encapsulated, do not open

opportunities to develop successful attacks. Even the

scanner tool provides no assurance about its detection

result, and it informs that this detected vulnerability

requires user verification.

Most of cases where CSRF false positives were

identified, they happened in error pages. An attacker

performing a CSRF attack to access an error page can

be dangerous if the error page presents links or buttons

which permit access to the application (as “back”

buttons which bring back the user to the last page

he/she accessed) or if the error page displays private

information about the system (such as database name or

table names). For both applications, the error pages do

not present any way of accessing application

functionalities or private information. Hence, we

considered theses cases as false positives because a

CSRF attack when accessing the error pages is useless.

The last column of Table 3 shows the total

percentage of lack of coverage and false positives.

From the 19 vulnerabilities investigated, 42% are false

positives and 47% were not identified by the scanner

tool. It indicates the limitations of this tool we found in

this study.

7.Conclusions

In this paper we present an experimental study

where we analyzed the effect that Java software faults,

injected on the source code of Web applications, can

have on security vulnerabilities. Also, we analyzed the

influence of these faults on the security vulnerabilities

detection by a well known commercial web security

vulnerability scanner tool. These analyses were

performed based on a method that uses attack trees

modeling in order to verify the results obtained by the

scanner tool.

Fault injection techniques were used to support the

experiments and software faults were injected, one at

time, in a controlled way, into target Java codes of two

small Web applications.

The context of the application code where the fault

was injected is analyzed in order to understand the

relationship between the fault and potential new

vulnerabilities. Manual attacks were performed guided

by attack tree models to confirm the existence of

vulnerability.

Results show that, according to the context of both

Java target code applications and considered security

vulnerabilities structure, the location of the injected

faults were not where new vulnerabilities arose.

However, the injected faults did affect the behavior of

the application and, consequently, the behavior of the

scanner tool in detecting new vulnerabilities..

Results of the scanner tool were validated through

manual attacks based on attack trees. It showed high

percentage of lack of coverage and many false

positives, showing its limitations. Some factors that

influenced this percentage are, in addition to the

activation of the faults injected into the source code of

the applications, the use of different development

technologies (such as Hibernate) and some outdated

features of the tool (as the internal internet browser).

As future work we intend to extend this experiment

analyzing the effect of other types of faults and the

effectiveness of other vulnerability scanner tools. We

also intend to develop a tool to perform the attacks

(based on attack trees) automatically.

8. References

[1] M. Vieira, N. Antunes, H. Madeira. "Using Web Security

Scanners to Detect Vulnerabilities in Web Services”.

IEEE/IFIP Intl Conf. on Dependable Systems and Networks,

DSN 2009, Lisboa, Portugal, June 2009.

[2] J. Fonseca, M. Vieira, H. Madeira. “Testing and

Comparing Web Vulnerability Scanning Tools for SQL

Injection and XSS Attacks”, 13º IEEE Pacific Rim

Dependable Computing Conference (PRDC 2007),

Melbourne, Victoria, Australia, December 2007.

[3] J. Fonseca, M. Vieira. “Mapping software faults with

web security vulnerability”. IEEE/IFIP Int. Conf. on

Dependable Systems and Networks (DSN 2008), Anchorage,

USA, 2008.

[4] T. Basso, R. Moraes, B. P. Sanches, M. Jino. “An

Investigation of Java Faults Operators Derived from a Field

Data Study on Java Software Faults.” In: Workshop de Testes

e Tolerância a Falhas - WTF2009, João Pessoa, Brazil,

2009, pp. 1-13.

[5] J. Durães, H. Madeira. "Emulation of Software Faults: A

Field Data Study and Practical Approach". IEEE Trans. on

Software Engineering, vol. 32, n. 11, Nov. 2006, pp.849-867.

[6] Acunetix Web Appication Security. Available in

http://www.acunetix.com, November/2009.

[7] IBM Rational AppScan. Available in http://www-

01.ibm.com/software/awdtools/appscan/, November/2009.

[8] N-Stalker The Web Security Specialists. Available in

http://www.nstalker.com/, November/2009.

[9] HP WebInspect. Available in

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_c

ontent.jsp?zn=bto&cp=1-11-201-

200%5E9570_4000_100__, November/2009.

[10] Burp Suite. Available in

http://www.portswigger.net/suite/, November/2009.

[11] Gamja. Available in

http://sourceforge.net/projects/gamja/, November/2009.

[12] B. Schneir. “Attack Trees: Modeling Security Threats”,

Dr. Dobb’s Journal, December, 1999.

[13] OWASP Top 10 Project. Available in

http://www.owasp.org/index.php/Category:OWASP_Top_Te

n_Project, February/2010.

[14] CGISecurity.com. “The Cross Site Scripting FAQ.”

Available in http://www.cgisecurity.com/xss-faq.html,

November/2009.

[15] W. G. Halfond, J. Viegas, A. Orso, “A classification of

SQL injection attacks and countermeasures”. In Proceedings

of the IEEE International Symposium on Secure Software

Engineering, Arlington, Virginia, March/2006.

[16] R. Auger. “The Cross-Site Request Forgery

(CSRF/XSRF) FAQ”. Available in

http://www.cgisecurity.com/csrf-faq.html, November/2009.

[17] Research Test Group. Available in

http://www.ceset.unicamp.br/docentes/regina/projeto/,

December/2009.

[18] Hibernate. Available in https://www.hibernate.org/,

December/2009.

[19] OWASP – Preventing SQL injection in Java. Available

inhttp://www.owasp.org/index.php/Preventing_SQL_Injection

_in_Java#Hibernate, December/2009.

[20] CWE – Common Weakness Enumeration. Available in

http://cwe.mitre.org/data/definitions/564.html,

December/2009.

http://www.acunetix.com/
http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.nstalker.com/
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200%5e9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200%5e9570_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200%5e9570_4000_100__
http://www.portswigger.net/suite/
http://sourceforge.net/projects/gamja/
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.ceset.unicamp.br/docentes/regina/projeto/
https://www.hibernate.org/
http://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java#Hibernate
http://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java#Hibernate
http://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java#Hibernate
http://cwe.mitre.org/data/definitions/564.html

